欢迎光临中国鳗鱼网

水产饲料配方模型与鱼类营养代谢性疾病(上)

陶青燕

(诺伟司国际贸易有限公司)

近年来随着饲料原料价格的巨大波动,水产饲料配方已经结束了过去的微调时代,水产配方模型的调整已成为了人们应对过山车式原料价格的利器。与此同时在水产养殖过程中人们却经常发现一些不具备传染特性的鱼类疾病。这些疾病往往具有一定的区域特征或者与使用某些饲料企业的产品存在较大的关联。虽然这些疾病给鱼类的生长、体型、体色带来显著的影响甚至导致养殖的失败,但通过抗生素药物治疗往往不能有效的控制,而通过控制投饵率或转用其它饲料却可以得到缓解。这些疾病通常是由营养代谢障碍引起的,而特定的营养代谢疾病与饲料配方的结构模型间存在高度的相关性。通过了解诸如高能配方模型,膨化料配方模型,动物下脚料配方模型,高植物蛋白配方模型的营养组成及代谢特点,可以帮助我们深入预测这些配方模型下高概率的鱼类营养代谢性疾病的发生,从而帮助我们在多变的原料价格下采取不同的配方模型时可以有针对性进行营养代谢性疾病的关注和预防,从而使养殖的效益有保障。

1  鱼类营养代谢性疾病概况

在野生状态下,鱼类很少发生营养代谢性疾病。干旱或者水体污染可能会导致食物的匮乏,从而产生营养不良。但在人工养殖情况下,则完全不同。鱼类由于主要或完全依赖人工饵料,由于饵料的营养平衡性或过渡追求生长速度而导致的过食等现象,鱼类的营养代谢性疾病的发生几乎是随处可见。

通常对于特定养殖池塘定义营养代谢性疾病是非常困难的,因为仅发生单一的营养素缺乏症的情况是非常少见的。营养缺乏的日粮往往使鱼类对于疾病更于易感,从而使营养代谢性疾病与感染性疾病混杂在一起,而难于辨识。营养素缺乏只是营养代谢性疾病的一方面,营养过剩或营养不平衡也是营养代谢性疾病的其它类型。生产中的营养代谢性疾病还包括饵料中含有的有毒有害物质。随着养殖集约化程度的不断发展这些物质对鱼类的影响越来越为显著。

2  饲料脂肪与营养代谢性疾病

2.1  高脂原料与氧化脂肪

氧化脂肪是引起鱼类营养代谢性疾病的诸多因素中最严重而且也最普遍的因素。由于直接添加油脂的配方成本往往更高,所以目前水产饲料配方中的油脂有很大一部分直接来源于原料,如米糠、青枯、肉粉、DDGS、膨化大豆,鱼粉等。相对于直接添加的油脂,这些油脂的质量更难控制,并且更容易在仓库存储中不断恶化。上世纪在日本爆发的Sekoke病(鲤鱼瘦背病),就是由于使用的蚕蛹发生了脂肪氧化而导致大规模营养代谢性疾病。虽然由于人们的认知和原料品控的加强,大规模爆发鱼类脂肪氧化引起的疾病已经不太可能,但局部区域仍有瘦背病的案例,同时由于脂肪氧化引起的其它鱼体损伤更以一种隐性的方式危害着鱼体的健康,削减着养殖的经济效益。氧化脂肪可以导致鱼体皮肤掉色、贫血、脂肪肝、鳃丝粘着、肌肉萎缩。更为宏观的指标有致采食量下降,有胃的鱼类有吐料的情况发生,仔稚鱼的死亡率会显著上升。

氧化脂肪导致鱼体损伤的机理在于:1.不饱和脂肪酸的双键结构更易于发生氧化,所以脂肪氧化首先减少了油脂中不饱和脂肪酸的含量,容易导致鱼类特别是海水鱼类必需脂肪酸的缺乏,必需脂肪酸的缺乏可导致肝脏肿胀、苍白、组织学表现为脂肪浸润。2.脂肪氧化的最终产物如自由基,过氧化物、醛、酮会导致体内某些酶活的丧失,进而导致鱼体的损伤,这些有毒产物可导致毛细管的通透性增加,往往解剖鱼体可以看到腹腔积液。3.肝脏的损伤是最为直接和人们关注的核心。由于肝脏的功能受损,会导致脂肪转运障碍,表现为脂肪肝,同时肝脏组织切片上能看到褐脂质的沉积。鱼体表现为贫血,这与受损的肝脏分泌促红细胞生成素减少有关。

同时脂肪氧化的分解产物还会同日粮中的其它营养物质产生反应,特别是维生素(A,E,B6,C),综合的表现为生长速度下降和饲料报酬升高。 虽然氧化一旦发生就不能逆转,但合理的使用抗氧化剂,特别是使用具有体内抗氧化的自由基消除剂,可以消除活性氧自由基在体内继续的聚合酶链式反应,从而具有维护鱼体健康的作用。

2.2  高能配方模型下的自由基氧化损伤

随着人们对饵料系数和生长速度的不断要求,水产饲料的能量浓度不断提升。这种提升的显著特征是配方中碳水化合物的空间被不断挤压给脂肪,而脂肪的能量浓度是碳水化合物的2.5倍,肉食性鱼类这个比值会更高。由于脂肪的蛋白质节约作用,因此高的脂肪可以使蛋白质尽可能多的用于肌肉的生长,因此这样的配方模式可以在既定的投喂量下促使鱼类以更快的速度生长。这是水产动物营养不同于畜禽营养的一个显著特点。在中国当前油脂的蛋白节约效应被很好的应用于鱼粉的替代方案中。由于较短的生长季节以及鱼粉替代的原因,高能配方将会作为一种配方的主要结构而长期存在并持续发展,这是全球的趋势。此外即使使用非高能配方,农户为了追求出塘规格,过渡投喂的现象也是非常普遍的,因此高能量摄入几乎是所有精养鱼类所共同面临的一种现状。

目前我国驱动高能配方的源动力主要来自于市场竞争而非系统的技术进步,对于这种巨大的配方模型改变对鱼体代谢的影响还缺乏深入的认识。因此在实践中高能配方模型下的鱼体健康与生长的矛盾一直就一直困扰这人们,人们往往在年初制定高能配方后就战战兢兢地熬到出鱼。

在高能配方条件下,有经验的配方师会发现即使非常严格的控制原料的质量(氧化和霉变),肝损伤也是这种配方结构下的必然产物。肝细胞具有强大的再生功能,对于尚处于生命旺盛时期的养殖鱼类更是如此,只要没有持续的损伤,鱼类完全可以快速恢复健康。这也是为什么在实践中人们发现通过饥饿或控料可以控制这种营养代谢性疾病继续恶化的重要原因。这种特征可以帮助我们对这种营养代谢性疾病进行生产上的初步判断。但是人们对于饵料系数和生长速度的狂热追求,使养殖鱼类很难有休生养息的机会。如果要维护生长与健康的平衡,那就需要进一步了解这种营养代谢性疾病发生的内在机理,并进行有效的预防和控制。这将帮助我们对高能配方日粮或精养模式下的鱼类代谢进行更为深入的认识,从而使配方的全价性更为完善。

鱼类依靠吸入氧气分解食物获取能量。在能量代谢过程中吸入的氧其中有98%~99%参与能量的代谢,另外1%~2%的氧则转化成氧自由基。自由基是指能独立存在的含有1个或多个不配对电子的任何原子或原子团。由于未成对原子总是有成对的趋势,因此自由基在生物体内有很强的氧化能力,且易于产生连锁反应。它们可以与DNA,蛋白质以及细胞膜上的多不饱和脂肪酸发生反应,导致这些生命大分子功能的紊乱或丧失。氧自由基是导致动物代谢紊乱和疾病的重要体内因子,也被认为是应激产生和衰老发生的直接物质。高脂配方或精养模式下过多的能量摄入使能量代谢水平增高,细胞耗氧增加,这是体内氧自由基堆积的一个重要原因。

氧自由基可以使完整密封的血管的通透性增加,并且使毛细血管脆性增加,使血管容易在应激下破裂发生漏血、渗液,所以在拉网或运输应激的情况下鱼体容易应激发红出血,继而容易在运输途中死亡。由于肝脏是体内代谢速度最快的器官之一,因此肝脏是自由基首先攻击的器官,在氧自由基的自身攻击下导致年富力强的养殖鱼类肝脏功能异常,从而导致脂肪不能有效转运出肝脏,出现脂肪肝的症状。继续的自由基攻击下,将导致大量的肝细胞的坏死,再生和修复过程,从而表现出肝质地发硬的纤维化症状。此外由于体内硒、锌、铜、VEVC参与体内自由基消除的过程,因此过量的氧自由基还耗竭掉体内这些微量的营养物质,并使鱼体表现出相应营养素缺乏的症状。但无论多么纷繁复杂的表象,高速代谢下的自由基堆积和氧化损伤是一切问题的源头,通过针对性的加强高速代谢下鱼体内氧自由基的消除能力。就可以安全确保鱼的健康与快速生长,否则由于缺乏健康的保护,高能饲料或精养的实践养殖效果可能还不及普通能量配制的饲料。